Skip to main content
  • H. Radak, C. Scheunert, G. T. Nguyen, V. Nguyen and F. H. P. Fitzek, “Lightweight Generator of Synthetic IMU Sensor Data for Accurate AHRS Analysis”, in Proc. 19th IEEE Conference on Advanced Robotics and its Social Impacts (ARSO), 2023, DOI: 10.1109/ARSO56563.2023.10187484.

 

  • V. Nguyen, J. A. Cabrera, J. Acevedo, C. Scheunert, G. T. Nguyen and F. H. P. Fitzek, “A Good Horse Only Jumps as High as Needed: Multi-Field Fulcrum Codes for Heterogeneous Decoders,” in Proc. MELECON, doi: https://doi.org/10.1109/melecon53508.2022.9843027.

 

  • W. Büschel, K. Krug, K. Klamka, R. Dachselt, “Demonstrating CleAR Sight: Transparent Interaction Panels for Augmented Reality,” in Extended Abstracts CHI ’23, Hamburg, Germany. ACM, 2023. https://doi.org/10.1145/3544549.3583891.

 

  • K. Krug, W. Büschel, K. Klamka, R. Dachselt, “CleAR Sight: Exploring the Potential of Interacting with Transparent Tablets in Augmented Reality,” in Proc. ISMAR ’22, Singapore. IEEE, page 196-205, 2022. https://doi.org/10.1109/ISMAR55827.2022.00034.

 

  • S. Engert, K. Klamka, A. Peetz, R. Dachselt, “STRAIDE: A Research Platform for Shape-Changing Spatial Displays based on Actuated Strings,” in Proc. CHI ‘22, New Orleans. ACM, 2022. https://doi.org/10.1145/3491102.3517462.

 

  • A. L. Fietkau, S. Stone, P. Birkholz, “Relationship between the acoustic time intervals and tongue movements of German diphthongs,” in Proc. Interspeech 2022, doi: 10.21437/Interspeech.2022-73.

 

  • D. Salihu, E. Steinbach, “SGPCR: Spherical Gaussian Point Cloud Representation and its Application to Object Registration and Retrieval.” IEEE/CVF WACV 2023.

 

  • D. Salihu, A. Misik, M. Hofbauer, E. Steinbach. “S2CMAF: Multi-Method Assessment Fusion for Scan-to-CAD Methods”, IEEE ISM 2022.

 

  • D. Salihu, A. Misik, Y. Wu, C. Patsch, F. Seguel, E. Steinbach, “DeepSPF: Spherical SO(3)-Equivariant Patches for Scan-to-CAD Estimation”, at ICLR 2024.

 

  • D. Salihu, A. Misik, Y. Wu, C. Patsch, E. Steinbach, “NPRF: Neural Painted Radiosity Fields for Neural Implicit Rendering and Surface Reconstruction, accepted at ICASSP 2024.

 

  • J. Schulz, H. Radak, P. T. Nguyen, G. T. Nguyen and F. H. P. Fitzek, “On the Limits of Lossy Compression for Human Activity Recognition in Sensor Networks”, in Proc. 48th IEEE Conference on Local Computer Networks (LCN), 2023,  DOI: 10.1109/LCN58197.2023.10223374.

 

  • Dong Yang, Xiao Xu, Mengchen Xiong, Edwin Babaians, and Eckehard Steinbach, “SRI-Graph: A Novel Scene-Robot Interaction Graph for Robust Scene Understanding,“ IEEE International Conference on Robotics and Automation (ICRA 2023), May 29 – June 2, London, UK, 2023. 

 

  • Edwin Babaians, Dong Yang, Mojtaba Karimi, Xiao Xu, Serkut Ayvasik, and Eckehard Steinbach, “Skill-CPD: Real-time Skill Refinement for Shared Autonomy in Manipulator Teleoperation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), October 23-27, Kyoto, Japan, 2022.

 

  • Stefan Hägele, Fabian Seguel, Driton Salihu, Marsil Zakour, and Eckehard Steinbach, “RadarCNN: Learning-based Indoor Object Classification from IQ Imaging Radar Data“, accepted at 2024 IEEE Radar Conference (RadarConf24), May 06-10, Denver, US, 2024.

 

  • H.Radak, C. Scheunert, J. Schulz,  G. T. Nguyen and F. H. P. Fitzek, “Performance Comparison of Real-Time Algorithms for IMU-Based Orientation Estimation”, in Proc. of the European Wireless (EW), 2023.

 

  • N. Kumar, L. Krause, T. Wondrak, S. Eckert, K. Eckert and S. Gumhold, “Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks“, Sensors. 2024; 24(4):1213. https://doi.org/10.3390/s24041213.

 

  • Y. Mansour and R. Heckel, “Zero-Shot Noise2Noise: Efficient Image Denoising without any Data”, Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

 

  • D. LeJeune, J. Liu, R. Heckel, “Monotonic Risk Relationships under Distribution Shifts for Regularized Risk Minimization”, Journal of Machine Learning Research (JMLR), 2024.

 

  • A. Krainovic, M. Soltanolkotabi, R. Heckel, “Learning Provably Robust Estimators for Inverse Problems via Jittering”, Conference on Neural Information Processing Systems (NeurIPS), 2023.

info@6g-life.de